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Abstrect

Materiel should withstand the rigors of the weather
and climste. A greater cost usually is regquired
when the materiel must withstand weather for a
longer pericd of time or withstand a greater ex-~
treme.

The cost to produce materiel for agll weasther ex-
tremes is great. The cost is great even when only
two or three weather elements are considered. The
U. S. Ravy, Air Force and Army recognize the probliem
and have issusd the Military Standards (MIL-STD)
210A to help solve the problem. However, the use
of MIL-STD 210A tc establish specitications for
materiel based on low probabilities of Ffailure and
independence of weather events may result in over
specification which requires waivers, increased
time and increased costs.

This paper presents scme of the information for
marine areas which will allow better specifications
based on more new data, a2 less restrictive specifi-
cation for failure and for dependence of weather
events., Craphical presentation is for the .01
prabability, Specification of failure levels at
.05 or .10 may be more reasonable in the light of
weather dependence.

Wot all features of weather extremes of the atmos-
phere and oceazn are considered here. Neither ar
the sirultaneous occurrences of weather events used.

Karcld L. Crutcher,

WEATHER EXTREMES

tional Climatic Center

Introduction

One of the more fascinating aspects of our environ-
ment is the extreme behavior of the atmosphere and
sea. There are many types of extremes - the world's
record for a single type of observaticn, record
durations, monthly or seasonal extremes, and mam-
moth storms, to name a few. "Record" is the key
word. All actual (as opposed to theoretical) ex-
tremes must be recorded to be known. This requires
an observation to be taken at the exact time =nd
place that an actual extreme is oeccurring. Observ-
ing practices make this regquirement almost impossi-
ble to fulfill., The recorded extremes, therefore,
are considered to be only estimates of the actual
extreme environmental conditions.

The rare occurrences of an event may provide
interesting reading, but they also have practical
applications. ZEngineers and architects design
equipment to withstand certain environmental condi-
tions. Econeamically, it is not feasible to design
equipment that will withstand all extremes. The
user nust assume a risk. He must be willing to
accept the consequences of a piece of equipment
feiling, say, once .in fifty years. For this reason,
extremes that are used for design criteria are
generally treated probabilistically. The record of
observations is used to determine the likelihood of
-obtaining reasonable weather extremes in any given
length of time.

‘The probabilistic approach to marine envirommental
extremes presented in this paper is extracted from
a working document prepared for the revision of
Military Standards (MIL-STD) 2104 to 2108, Climetic
Extremes for Militery Equipment. The working docu-
ment was written at the National Climatic Center,
Environmental Datz Service, Nationzl Oceanic and
Atmospheric Administration, Asheville, N. C. It
was used by the Commander, Neval Weather Sarvice
Command, VWashington, D.C., as the U. S. Navy input
to the revision of MIL-3TD 21CA. Laznd extremes
were prepared by the U. S. Army and upper air ex-
tremes by the U. 8. Air Force.

The military standards are for the weather or cli-
matic extremes used to prepere manufacturing speci-
fications for materiel. At times, present specifii-
cations may not be used judiciously. For example,
a piece of electronic gear may be reguired 4o pass
tests of extreme temperature simultaneously with
extreme relative humidities in the test chamber.
In nature the highest temperatures in the open do
not occur with the highest relative humidities. In
addition, the probability level may be too restric—
tive. Both of thesaz factors increase the productim
costs beyond all reason for the equipment will never
encounter such open air conditioms.

Simultaneous occurrences of seversl weather elemerts
at a time would provide a better basis for specifi-
cation preparation. However, such studies are often
difficult to make. Therefore, these studies, where
simultaneous conditions are required, are limited



"to only the one percent level for a particular ele-'
ment. Diurnel curves are then prepared for the
accompanying elements for those times when the pri-
mary element exceeds the one percent level.

.Open air situations are the basis for this study.
‘Conditicns within enclosed spaces, such as caves,
‘underground storage, below decks, or in buildings
~are not a part of this presentation. This study
excludes also Antarctic data of all types.

‘This paper contains only a part of the information
to be included in the revision of Military Standards
210A. All information in the revision will be pre-
sented in tabular form. No curves or functional
.representation will be made. However, in the work-.
ing peper additional data and forms of presentation
care included. The four empirical probability levels
of extreme conditions, 0.20, 0.10, 0.05 and 0.01,
iwere selected. The 0.01 level will be the major
ilevel. The values for the 0.01 probability levels
‘will be shown below. In addition, wherever possi-
:ble, an average diurnal curve will be shown for all’
:days on which the 0.01 empirical probability level
‘was equaled or exceeded in the extreme semse. For
:example, for low conditions, such as low tempera-

itures, this is understood to be occurrences of tem—.
iperatures below a stated eriterion. |

‘ s

“{No actual bivariate or multivariate conditions are {

{to be shown. These and other consideratiens may be.
'investigated and given in subsequent sub-revisions :

{of MIL-STD 210B. i

i . .
;Informatlon Presentation

%The evolution of discussion, development and agree—:
‘ment as to what would be included in the revision
‘of MIL-STD 210A to 210B is not enjoined here. .
{Rather it is more pertinent to give some idea as to-
i Just how the information is to be presented. For
.purpose of reference a world map, showing the num-
.bering of Marsden Squares, is presented in Chart 1.
Near the equator these areas are essentially square.
As the areas approach the polar regions they take
‘on & rectangular appearance in a global presenta~
‘tion.

‘Data Source

Marine data are stored, generally, in the archives
by Marsden Square. All surface atmospheric datsa
ireferred to in the text as being for a Marsden
!Square were taken from the common Marine Format
TDF~11 (Tape Data Family) on file at the National
Climatic Center, Asheville, N. C. Instruments are
located at different heights on different ships and
it is impossible to tell from the data at which
height above the sea surface they were taken. The
assumption was made, therefore, that all instruments
were at the same height, and the data were used as
“if they were homogeneous. Radioscnde data on file
at the National Climatic Center provided the basis
for upper air marine environment extreme profiles
of temperature.

Data Presentation

;I. Ocean Wave Heights and Spectra

The mean height of the highest third of a1l waves

‘present in a wave train, called the significant

.ships.

wave height and often designated as (K 3), and the
extreme wave heights are important in %Ae design of
Figure 1 provides an estimate of the average

significant wave heights during wave build-up with

‘decreasing wind speeds.

increasing wind speeds and during wave decay with
This figure is based on &
study by Vaiksnoras eand Crutcher as revised by

Crutcher {1] and assumes optimum fetch end duration

conditions. Tabular information is presented in
Table 1. The observed data, as shown by the heavy
solid curve in the figure, indicate that as the
wind speed decreases, the waves will decay slower
than they built up.

. The extreme wave height is empirically estimated to

be 1.8 times the significant wave height. Tham [2]

- applied the Fréechet extreme-value distribution to

extreme wave heights. He fitted annual extrem= i
significant wave height data by the Frechet distri-

‘bution and then adjusted the distribution to ex-

‘treme wave heights by applying the scale transforma-
-tiom.
:Figure 2 and in tabuler form in Table 2.

His results are depicted graphically in

The data -
show that 50 percent of the years could have wave
heights in excess of sbout T2 feet and 5 percent of

.the years could have waves in excess of 116 feet.

-and wave action on ships and the freguency re-

{II. Maxinum Temperatures

‘select the area with the hizhest temperatures.
‘port selected was Abadan, Iran.

For & detailed discussion of the effect of swell

sponses of ships please see Lewis [3].

!The highest alr temperatures encountered by mariner$

may be expected to occur in ports. The U. S. Navy !

{[4] has recently published monthly averege tempera-,
“tures for the Northern Hemisphere.

These data were
screened along with those furnished by the U. S. :
Air Force and published by the U. S. Navy [5] to
The
The date for

. Abadan were tabulated from highest to lowest and

cumulative frequencies were computed. The expected

- diurnal range of temperatures corresponding to a
‘maximum temperature equal to the computed 99th per-
ccentile value is plotted on Figure 3 and tabulated

iin Table 3.
,tive humidity and insolation also are presented.

Corresponding diurnal ranges of rela-~

. Figure 4 and Table L present the same type of in-

-Persian Gulf and Gulf of Oman.

formation for the air tempsrature over the sea

" based on data screened from the U. S. Navy {6,

Vols. II, VIII]. The extremes are found in the
Since this area is
rather confined by land, maximum temperatures over
the open ocean also were examined. The diurmal
range for temperature and corresponding relative
humidity and insolation for the warmest open ocean
area — Marsden Squares 019 and 055 - are depicted
in Figure 5 and Table 5.

A survey was made of U. S. Navy [6, Vols. III, VIII,
7] for areas of maximum sea surface temperatures.
The extremes occurred in the Persian Gulf. The
diurnal range of the maximum sea surface tempera-
tures and corresponding air temperature, relative
humidity and insolation is shown on Figure 6 end
Table 6. These ranges were inferred from hourly
means of data taken from those days on which the

99th percentile value of sea temperatures was



vexceeded and from the work of Svedrup et al. [8],
Kuhlbrodt and Reger (9], and Krummel [10].

III. Relative Humidity

Areas of high relative humidity can occur both in
cold and warm climates. For a given relative
humidity, more moisture is preseant at a warm tem-
perature than at a cold temperature. Warm areas of
high relative humidity were therefore -investigated,
although it may be necessary to investigate cold
areas at a later date.

Because of drying considerations, it was felt that
low relative humidity in conjunction with high
temperatures would be more significant than low
;relative humidity in conjunction with low tempera-
‘tures., It may be necessary, however, to investi-
:gate the latter case at a later date.

:U. S. Department of Agriculture [11] was studied to:
‘determine areas of small and lerge wet bulb depres—.
:sions in order to find warm areas of high and low
irelative humidity. Based on the availability and
‘quality of data, Marsden Sguares 322 and 372 were
‘chosen to be most representative of the high and
ilow open ocean relative humidity cases, espective—}
ily. Diurpal ranges of the relative bhumidity with ;
'corresponding ranges of air temperature and insola-:
ition are presented in Figure T and Table T for high|
frelative humidity and in Figure 8 and Table 8 for
ilow relative humidity.

(IV.
i
iThe port of Abadan and open ocean Marsden Square
{103 were chosen for meximum withstanding airvtem-‘ f
peratures. The annual maximunm temperatures for
‘each location were plotted on semi-logarithmic
‘normal probability paper and a confidence envelope
was plotted according to a procedure developed by
Gringorten [12]. The medlan line for a normal dis-
‘tribution with the same mean and standerd deviation
as the yearly extreme sample was drawn to represent
‘a line of bvest fit. TFrox this line it is possible
to pick the maximum design temperature for any
withstanding period up to 1000 years. Figure 9
shows the curves for the port and open ocean.
Tabular date are shown in Table 9. Techniques for
converting the graphical deta to the tabular data
‘are given by Air Force Cambridge Research Labora-
‘tories [13]. i

Temperatures, Withstanding

Minimum air temperatures were treated in a similar
fashion. Barrow, Alaska, was chosen as the coldest:
port primarily because it has a long period of
record available and because it aoppears to be at
least as cold as any of the other stations investi-
gated. In addition, the temperature extremes for
Anchorage, Alaska, a port open all winter, were
analyzed to provide a contrast with Barrow which is
closed by ice in the winter. Ocean Station Bravo
provided the data for the open ocean. The with-
standing curves for minimum air temperature are
presented in Figure 10, and tsbular data are in-
cluded in Teble 9.

Maximum end minimum sea temperatures also were
examined in like merner. U. 3. Navy [6, Vols. III,
VIII] data showed that maximum sea temperatures
occur in the Persian Gulf and mininum sea tempera-

‘tures occur off the coast of Newfoundland, Canada.
A graphical presentation of the withstanding curves
.is found in Figure 11, while tabular data are found
in Table 10.

Deep sea bottom water temperatures hover around h°C
because of the pnysical characteristics of water.
Water has a maximum density near that temperature.

V. Wind Sp=zed

‘It was felt that a tabulation of peak gusts coupled
with a study of durations of sustained wind speeds
would best describe the wind extremes.

'Using the same procedure as for temperatures, with-
‘standing criteria for peak gusts were developed for
'ports and the open ocean. Gusts associated with
ityphoon and hurricane conditions were not included.
:Adak, Alaska, was chosen as the windiest port and
{Ocean Station Delta as the windiest open oceen lo- -
ieation. The withstanding curves are depicted in
‘Figure 12 with corresponding data listed in Table 1L
:Withstanding conditions for typhoon conditions ere ‘
‘shown in Figure 13 end Table 11. The data cane
ifrom a listing of maximum typhoon winds for the
‘years 1953-1967 prepared by the Naval Weather Re- |
‘search Facility, Norfolk, Virginia, and from work
!done at the National Climatic Center, Asheville, :
zNorth Carolina, on maximum recorded winds durin

jthe years 19k5-1952.

1

{The original recorded winds at Adek were snalyzed
ito determine wind speed durations at ports. The
itime of duration for winds above 3% kt, between
{50-59 kt, 60-69 kt, T0-79 kt, and ebove 80 kt was
:noted. Each of these groups then was listed in
‘descending order of length of duration of the sus—
‘tained wind and empirieal probability levels of
ioccurrence were determined. For the open ocean, .
Ethe duration of each cccurrence of gale force winds
‘{above 3% kt) was noted for Gcean Station Bravo.

" Ships ars not required to document the duration of

,any winds except gales. ZEmpirical probability
:levels of occurrence of specified durations then
iwere determined. Table 12 presents the wind dura-
ition data.

'VI. Minimum Temperature Duration

iSeveral ports in cold areas were investigated for
‘temperature record. Because of the requirement for
‘a long period of hourly temperature data, the
search was narrowed to U. S. first order stations.
Two stations were chosen: Barrow, which is closed
t6 normal sea traffic by ice during part of the
year, and Anchorage, which is open to sea traffic
~during 211 months of the year. A survey of Ocean
Station Vessels revealed that Bravo is in the cold-
~est erea and thus was chosen as representative of
the open ocean.

A computer program was prepared to search the data
.records and to count the number of hours that a
‘temperature remained at or below a given value. A
-listing wes produced which presents a count of oc-
currences of each temperature for each duration
interval from 1-144 hours.

Cases where the duration of a given temperature



‘lasted longer than a three-month period in any one
.year were not counted in the final listing but note
‘was made of these occurrences. A list was preparad
of the temperatures asscciated with each duration
and four empirical probability levels were picked.
These four temperatures for each duration interval
then were standardized by

t -t . ‘

min

= By

where t is the temperature in degrees F, gmin is the
.average monthly minimum temperature, R is

.the average monthly temperature range, and th is the
'standardized value. The procedure is given by
,Sharon [14].

gThe standardized temperature values were plotted

:versus duration in hours and a smooth curve drawn |

fthrough the points for each empirical probability
;level Standardized values then were picked from
;the curves and trensformed to temperature values by
're~arrang;ng the above equation.

\ !
Values for open and closed port and open ocean mini-
P air temperatures are given in Tables 13, 1k,

,and 15, respectively, and plots are shown in Flgureé
i1k, 15, and 16, respectively. The duration of mini-
‘mum sea temperatures is given in Table 16 and Figure
{17. TFuture work and expansion of this study un- !
;doubtedly will show a further smoothing of the llnes
vand establishment of better symmetry. ;

H

;

iVII. Visibility

]
‘Marine visibility observations are subject to more :
‘sources of error than those taken on land. Ships
‘that have sailed out of sight of land have no point
‘of reference from which to judge visible ranges.
‘In addition, reported low visibilities at night
sometime result from darkness rather than an ob-
‘struction to vision.

Notwithstanding the observing problems, two areas
over the oceans stand out as having low visibili-
ties - the area around the South Sandwich Islands
‘and the area just south of the Kamchatka Peninsula. '
The latter area is worse. During June, the warm,
moist air comes in contact with cold water to form .
heavy fog. The records indicate that in this month,
'82.7 percent of the visibilities are less than 1/h
‘nautical mile, 85.3 percent are less than 1 mile,
.and 93.6 percent are less than 5 miles.

‘VIII, Salinity

Salinity affects buoyancy, the freezing temperature
of the water, and air-sea interactions, all of which
play an important role in the maritime climate. The
varigbility of salinity over the ocean has not been
determined to the extent that the distribution of
extremes is known. Jacobs [15] shows salinities

" over the North Pacific and North Atlantiec Oceans of
greater than 36 °/.o and 37 °/o0, respectively.
‘Sverdrup [16] indicates average maximum salinities
of ebout 41 ®/,, in the Red and Arabian Seas.

Values as.high as L5 ©/,, have been measured. Low
salinities of less than 1 °/,, are fairly common
‘near estuaries, snowmelts, glaciers, and in places
‘1ike the Gulf of Bothnia.

"IX. Upper Air Temperatures

Upper air environmental temperature extremes over
navigable waters and ports are presented in Figure
18 and Table 17. Low and high extremes are given
'in heights sbove sea level up to 16 km. Above this
level the atmospheric profiles are coincident with
‘the world-wide upper alr extremes prepared by the
U. S. Air Force. The profiles presented do not
represent dynamic internal consistency of the at-
mosphere. They are simply envelopes of extreme
conditions.

The data for the extreme profiles for naval opera-
‘tions came primarily from the U. S. Navy [4, 17].
‘The profiles were developed from monthly mean
'values and standard deviations of atmospheric pa-
‘rameters at specified altitudes. The risk values
‘were determined by using a statistical approach
‘coupled with empirical data. An attempt was made
ito make the extreme profiles realistic in view of .
inaval operations. T

i{The highest temperatures generally occur in the
{Northern Hemisphere summer. Up to about 12 Ym,
these high temperatures are found over the Arabian
.Sea. Above this level the extreme high tempera~
'tures are found near the Aleutian Islends. The
‘lowest temperatures are found during winter. Up to
.about 8 km, they occur over the North Atlantic
{Ocean off the coast of Labrador. Above 8 km, the
‘coldest temperatures are found over the waters
reireling Antarctica. It should be noted that the
worldwide navigable waters stretched from 60°N to
:60°S. It was felt that poleward of these boundaries
Esurface naval operations essentially would cease
.because of sea ice, extremely cold temperatures, or.
;other harsh environmental factors.

Surmary

The determination of extreme conditions in the
maritime environment has been undertaken to estab-
‘lish design criteria for materiel involved in
‘worldwide naval cperations. An attempt was made to
provide logical and realistic estimates of the ex-
‘tremes for the sphere of naval activities. As
knowledge of the climate increases through the
collection of more data and through more sophisti-
cated analytical technigues, better and more pre-
.cise estimates of the extremes can be obtained.
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‘ 10 20 30 Lo
iIncreasing

‘Wind Speed 2.0 5.5 12.5 22.0
‘Decreasing

' Wind Speed 5.0 2k.0 37.5

i

éMaximum Air Temperature °F 118.0

QUANTTILES - EXTREME WAVE. HEIGHTS (FEET) [(H1/3)x(1.8)]

TABLE 2.
Probability Level 0.50
Wave Height (ft.) T2

T e ——e T S O S

TABLE 1. WAVE HEIGHT (FT) FOR INCR.E‘.ASING AND DECREASING WIND SPEED

Wind Speed (kts. )

50 60 1 T0 80 90 100 110 120
33.0  45.5  59.5 72.0  85.5 96.0  105.0  107.5
51.0 - '82.0 87.5 96.0  101.0 102.0  107.5

‘

(AFTER E.C.S. THOM, 1971)

0.20 @ 0.10 0.05 0.04 0.02 0.01

88 . 101 115 120 131 156

]
Lo

TABLE 3. DIURNAL VARIATION, PORT MAXIMUM ATR TEMPERATURE, PROBABILITY IEVEL 0.0l

i
l :
{ i

; °c 47.8 5
§ ;Hour Loca.l Mean Time
‘Element o0 03 05 07 0 1 13 15 17 1 2 23
?Air Temperature °F 90.8 87.3 8k.6 86.3 -99.8 110.1 116.0 118.5 115.% 106.9 99.3 9k.T
i : °c  32.7 30.7 29.2 30.2 37.7T L43.3 U6.7 48.1 k6.3 k1.6 - 37.4 3L.8
; ! :
{Relative Humidity % 50.7 55.3 64.2  60.9 37.5 27.9 22.1 21.1 26.9 37.2  43.3 k7.2
%,insclation Ly/Hr 00 00 00 36 73, ée 92 70 33 o1 00 00
§ ' i i
: - ! ‘
: TABLE k. DIURNAL VARIATION, SEA SURFACE MAXIMUM AIR TEMPERATURE, PROBABILITY LEVEL 0.01
,Maximwn A:"Lr Temperature °F 99.8
! OC 37.7 » :
; 7 {Hour Local Mean Time
‘Element - 81 o3 5} or 9 - 11 i3 15 1T 19 21 23
Air Temperature °F  95.9 95.7 96.0 97.5 98.8 99.8 100.0  100.1  99.7 99.0 97.9  96.6
' °c  35.5 35.% 35 36.%  37.1  37.7 37.8  37.8 37.6 37.2  36.6 35.9
‘Relative Humidity % 82.0 83.0 83.6 81.6 78.0 Tk.8 73.0 72.5 T73.8 77.5 80.4 81.2
{Insolation 1y/Br 00 00 00 34 T2 93 92 70 31 00 00 00
TABLE 5. DIURNAL VARIATION, OCEAN MAXIMUM ATR TEMPERATURE, PROBABILITY LEVEL 0.01
faximum Air Temperature °F 92.0 A

°c 33.3

: Hour Local Mean Time
Element - o1 03 03 o7 o9 i1 13 15 iT 19 21 23
Air Temperature °F 84.3 84.0 84.0 B84.8 87.6 90.2 91.6 91.5 90.5 88.5  86.4. 8h.6
, °c 29.1 28.9 28.9 29.3 30.9 32.3 33.1 33.1 32.5 31.h 30.2  29.2

" Relative Humidity % 84.7 84.9 8k.7 84.0 B0.7 T6.5  th.1  73.9  75.0 79.L  B4.2 8L.8
gInsolation 1y/Hr 00 00 01 24 66 86 86 6k 28 00 (o]¢] 00



TABLE 6.

f

DIURYAL VARIATICN, OCEAN MAXIMUYM

SEA TEMPERATURE, PROBABILITY LEVEL 0.01

Maximum Weter Temperature °F 96.1
°C 35.6
Hour Local Mean Time
Element o1 03 03 oT 99 il i3 15 17 19 21 23
Water Temperature °F 92.9 92.6 92.9 93.7 94%.8 95.5 95.9 96.1 95.9 95.4 94.6  93.5
°c 33.8 33.7 33.8 34.3 34.9 35.3 35.9 35.6 35.5 35.2 3%.8 3h.2
Air Temperature °F  92.5 92.5 92.8 9k.3 95.8 96.7  96.9 96,9  96.k  95.6  9L.3  93.0
‘ °c 33.6 33.6 33.8 3L.6 35.4 35.9 36.1 36.1 35.8 35.3 34.6  33.9
Relative Humidity # 8L.3 85.6 86.0° 85.6 84.3 82.7 81.3 80.0 78.8 78.0 78.8 81L.L4
‘Tnsolation ILy/Rr 00 00 00 3k T2 93 92 70 31 00 00 00
i TABLE 7. DIURNAL VARIATION, OCEAN HIGH RELATIVE HUMIDITY, PROBABILITY LEVEL 0.01
! i i
‘Maximum Relative Humidity 100% ! '
} ; 3
; ‘Hour Local Mean Time
Element o4 03 o5 or 0 1 13 15 1T 9 2 23
;Relative Humidity # 99.8 100 99.2 98.2 96.6 9h.7 92.9 92.5 93.7 96.1 98.2  99.3
:'Air Temperature °F 77-2 T77.3 78.1 _79.8 “81.7 83.0 83.8 84,1 - 83.8 82.8 80.6 T7.9
i °C  25.1 25.2 25.6 26.6 27.6 28.3 28.8 28.9 28.8 28.2  27.0 25.5
?Insolation Ly/dr 00 00 00 19 59; 83 83 63 23 00 . 00 00
S
; TABLE 8. DIURNVAL VARTATION, OCEAN LOW RELATIVE HUMIDITY, PROBABILITY LEVEL 0.01
fMinimum Relative Humidity 55% ; '
, ‘Hour Local Mean Time
Element o e o5 o e M 13 13 w19 2L 23
Relative Humidity % 65.6 65.6 64.5 62.0 58.5 56.4 ’5h.5 55.2 59.4 63.9 65.6 65.6
‘Air Temperature °F 68.2 68.4 68.9 T0.2 2.0 T3.6 4.6 L. 71.9 71.0 69.4  68.7
i °c 20.1 20.2 20.5 21.2 22.2 23.1 23.7 23.6 22.2 22.2 20.8 20.h4
‘Insolat;9n Ly/Hr 00 00 00 33 Thi 96 98 82 Ly 00 00 00
TABLE 9. MAXIMUM AND MINIMUM ATR TEMPERATURE WITHSTANDING
Risk i
Level Elerment Location Planned Life (years)
2 5 10 25
OF Oc . OF OC OF OC OF OC
10% Minimum
Temperature Closed Port -55.5 -L8.6 -57.5  =ho.7 -58.9 -50.5 -60.5 -51.b
Open Port -3k.1 -36.7 -36.9 -38.3 -38.7 ~39.3 ~40.9  -ko.5
Ocean + 3.7 -15.7 +1.6 -16.9 + 0.5  <17.5 - 1.2 -18.%
10% Maximunm . ;
! Temperature Port 123.2 50.7 12k.Q 51.1 124.3 51.3 124.8 51.6
! Ocean 110.8 43.8 113.5 L5.3 1i5.4 46.3 117.6 k7.6




Risk
Level

10%

: 10%

‘Port

‘Ocean

oF

°F

°c

MAXIMUM AND MINIMUM S:EA TEMPERATURE WITHSTANDING

TABLE 10.
Element Location ' ‘ . Planned Life (years)
2 -5 10 25
°F °c | °F °c °F °c °F °¢
Maximum Sea
Temperature Ocean 99.1  37.3 100.0 37.8 100.8 38.2 101.5 38.6
Minimum Sea .
Temperature Ocean 2F =57 - — 2k 0 bk =20+ 55— —6s 19,8 ~6.8—-
282 a4 2y -3 L Yo -2.2 T O SAN J=
TARLE 11. PEAK WIND - WITHSTANDING
i
Element Location : Planned Life (years)
2 % s 10 25
kts mps . kts ‘mps kts mps kts mps
Peak Wind : | ; i
Port 101 52.0 | 111 57.1 118 60.7 124 63.8
Ocean 109 56.1 ¢ 118 60.7 125 64.3 134 69.0
Typhoon 186 95.8 194 99.9 200 103.0 208 107.1
| ; )
i
TABLE 12. MAXIMUM WIND SPEED DURATIONS
- } | Probability Level
0.20 § , 0.10 © 0.05 0.01
3k to 49 kts. Y hrs. . iT urs. 12 hrs. 18 hrs.
50 to 59 kts. 2 min. ; '3 min. 7 min. 12 min.
60 to 69 kts. 1 min. x 12 min 4 min. 10 min.
70 to 79 kts. _ 1 min. =~ il min. 2 min. 3 min.
80 kts and above 1 min. ' -1 min. 1 min. 1 min.
> 3h kts. 6 hrs. 12 hrs 2k nrs. 48 hrs.
TABLE 13. MINIMUM ATR TEMPERATURE VS DURATION (OPEN PORT), PROBABILITY LEVEL 0.01
, ﬁuration (hours)

1 3 5 7 9. : P11 18 36 kY
-29.7  -28.7  -27.6  -26.7  -25.8  -24.8  -2l.2  -14.8  -9.T - 7.3
-3h.2 -33.7 -33.1 -32.6 -32.1 -31.6 -29.6 -26.0 ~23.2 -21.8

f, !
TABLE 14. MINIMUM ATR TEMPERATURE VS DURATION (CLOSED PORT), PROBABILITY LEVEL 0.0l
Duration (hours)

1 3 5 7 9 11 18 36 14k
-47.8 =47.h -47.0 -46.6 -46.2 -45.8 ST ~k1.2 -36.4 ~-31.0
-k4.3 A -43.9 -43.7 0 <43k -43.2 “42.y -40.7 -38.0 -35.0



j TABLE 15.
;

¢

; 1 3

i

iop + T.2 + 7.7

Maximum

Minimum

[T, S

TABLE 16.

MINIMUM AIR TEMPERATURE V3 DURATION (oCwAN), PROBABILITY LEVEL 0.0L

Duration (hours)

5 7 9 . . 1 18 36 72
+ 8.2 + 8.7 + 9.1 + 9.6 +11.3 +15.1 +20.4
-13.2 -12.9 -12.8 -12.4 -11.5 - 9.} - 6.4

i

MINIMUM SEA TEMPERATURE VS DURATION (OCEAN), PROBABILITY LEVEL 0.01

Duration (hours)
5 T 9 11 18 * 36 T2

+28.6 +28.7 +28.é ‘%28.8 +29.1 +29.6 +30.1
- 1.9 - 1.8 - 1.@ - 1.8 - 1.6 - 1.3 - 1.1
: i
Lo

i

TABLE 17. TEMPERATURE EXTREMES AT ALTITUDE, PROBABILITY LEVEL 0.01

0
°c 18
°F 118
°c -3%
°F -29

Altitude (km)

1 2 L : 6. 8 10 12 1k

33 25 1k E 1 -9 21 -39 =37
91 7 57 = 3b 16 -6 -38 -35
-29 31 -39 ¢ L6 56 -69 -7k -T5
-20 =24 -38 . -5 -69 -92 -101 -103

, ; j

' !

i

L

‘ !

1hk
+30.8

- 0.7

16

=37
=35

-86
-123
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150 - /N °, Denotes the 6ecurrence of single observation from other ships in other areas and times. — 150
- ; e Indicates several observations. -

140 L USCGC McCulloch o Selected moximum wave heigh?-win'd combination Juo

or Sinale observation observed ot ocean station vessels since 1958.

I~ ! $ 9 ‘ These data not used to compuie the two equations.  —

1 —~—— Computed mean curve.
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Figure . Forecast Versus Visual Observed Wave Heignis

(Adapted from Vaiksnoras and Cruicher 1960, Rev. 1969, unpublished)
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FIGURE 2. EXTREME WAVE HEIGHTS (Feet) [(H%)X(1.8) (after H.C.S. Thom, to be published)].
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FIGURE 9. MAXIMUM AIR TEMPERATURE - WITHSTANDING
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DRY BULB TEMPERATURE
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FIGURE 10. MINIMUM AIR TEMPERATURE - WITHSTANDING
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FIGURE 12. MAXIMUR PEAK GUSTS - WITHSTANDING




CLIMATE EXTREMES MIL.STD 2108 WITHSTANDING
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FIGURE 14. PORT MINIMUM AIR TEMPERATURE-DURATION
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FIGURE 15. PORT MINIMUM AIR TEMPERATURE;UURATION
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FIGURE 16. OCEAN MINIMUM AIR TEMPERATURE-DURATION
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FIGURE 17. OCEAN MINIMUM SEA TEMPERATURE-DURATION
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FIGURE 18. EXTREME (1% RISK) TEMPERATURE PROFILE
OVER NAVIGABLE WATERS






